3.25 \(\int x^3 (a+b \tan (c+d \sqrt{x})) \, dx\)

Optimal. Leaf size=261 \[ \frac{7 i b x^3 \text{PolyLog}\left (2,-e^{2 i \left (c+d \sqrt{x}\right )}\right )}{d^2}-\frac{21 b x^{5/2} \text{PolyLog}\left (3,-e^{2 i \left (c+d \sqrt{x}\right )}\right )}{d^3}-\frac{105 i b x^2 \text{PolyLog}\left (4,-e^{2 i \left (c+d \sqrt{x}\right )}\right )}{2 d^4}+\frac{105 b x^{3/2} \text{PolyLog}\left (5,-e^{2 i \left (c+d \sqrt{x}\right )}\right )}{d^5}+\frac{315 i b x \text{PolyLog}\left (6,-e^{2 i \left (c+d \sqrt{x}\right )}\right )}{2 d^6}-\frac{315 b \sqrt{x} \text{PolyLog}\left (7,-e^{2 i \left (c+d \sqrt{x}\right )}\right )}{2 d^7}-\frac{315 i b \text{PolyLog}\left (8,-e^{2 i \left (c+d \sqrt{x}\right )}\right )}{4 d^8}+\frac{a x^4}{4}-\frac{2 b x^{7/2} \log \left (1+e^{2 i \left (c+d \sqrt{x}\right )}\right )}{d}+\frac{1}{4} i b x^4 \]

[Out]

(a*x^4)/4 + (I/4)*b*x^4 - (2*b*x^(7/2)*Log[1 + E^((2*I)*(c + d*Sqrt[x]))])/d + ((7*I)*b*x^3*PolyLog[2, -E^((2*
I)*(c + d*Sqrt[x]))])/d^2 - (21*b*x^(5/2)*PolyLog[3, -E^((2*I)*(c + d*Sqrt[x]))])/d^3 - (((105*I)/2)*b*x^2*Pol
yLog[4, -E^((2*I)*(c + d*Sqrt[x]))])/d^4 + (105*b*x^(3/2)*PolyLog[5, -E^((2*I)*(c + d*Sqrt[x]))])/d^5 + (((315
*I)/2)*b*x*PolyLog[6, -E^((2*I)*(c + d*Sqrt[x]))])/d^6 - (315*b*Sqrt[x]*PolyLog[7, -E^((2*I)*(c + d*Sqrt[x]))]
)/(2*d^7) - (((315*I)/4)*b*PolyLog[8, -E^((2*I)*(c + d*Sqrt[x]))])/d^8

________________________________________________________________________________________

Rubi [A]  time = 0.371703, antiderivative size = 261, normalized size of antiderivative = 1., number of steps used = 13, number of rules used = 8, integrand size = 18, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.444, Rules used = {14, 3747, 3719, 2190, 2531, 6609, 2282, 6589} \[ \frac{a x^4}{4}+\frac{7 i b x^3 \text{Li}_2\left (-e^{2 i \left (c+d \sqrt{x}\right )}\right )}{d^2}-\frac{21 b x^{5/2} \text{Li}_3\left (-e^{2 i \left (c+d \sqrt{x}\right )}\right )}{d^3}-\frac{105 i b x^2 \text{Li}_4\left (-e^{2 i \left (c+d \sqrt{x}\right )}\right )}{2 d^4}+\frac{105 b x^{3/2} \text{Li}_5\left (-e^{2 i \left (c+d \sqrt{x}\right )}\right )}{d^5}+\frac{315 i b x \text{Li}_6\left (-e^{2 i \left (c+d \sqrt{x}\right )}\right )}{2 d^6}-\frac{315 b \sqrt{x} \text{Li}_7\left (-e^{2 i \left (c+d \sqrt{x}\right )}\right )}{2 d^7}-\frac{315 i b \text{Li}_8\left (-e^{2 i \left (c+d \sqrt{x}\right )}\right )}{4 d^8}-\frac{2 b x^{7/2} \log \left (1+e^{2 i \left (c+d \sqrt{x}\right )}\right )}{d}+\frac{1}{4} i b x^4 \]

Antiderivative was successfully verified.

[In]

Int[x^3*(a + b*Tan[c + d*Sqrt[x]]),x]

[Out]

(a*x^4)/4 + (I/4)*b*x^4 - (2*b*x^(7/2)*Log[1 + E^((2*I)*(c + d*Sqrt[x]))])/d + ((7*I)*b*x^3*PolyLog[2, -E^((2*
I)*(c + d*Sqrt[x]))])/d^2 - (21*b*x^(5/2)*PolyLog[3, -E^((2*I)*(c + d*Sqrt[x]))])/d^3 - (((105*I)/2)*b*x^2*Pol
yLog[4, -E^((2*I)*(c + d*Sqrt[x]))])/d^4 + (105*b*x^(3/2)*PolyLog[5, -E^((2*I)*(c + d*Sqrt[x]))])/d^5 + (((315
*I)/2)*b*x*PolyLog[6, -E^((2*I)*(c + d*Sqrt[x]))])/d^6 - (315*b*Sqrt[x]*PolyLog[7, -E^((2*I)*(c + d*Sqrt[x]))]
)/(2*d^7) - (((315*I)/4)*b*PolyLog[8, -E^((2*I)*(c + d*Sqrt[x]))])/d^8

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 3747

Int[(x_)^(m_.)*((a_.) + (b_.)*Tan[(c_.) + (d_.)*(x_)^(n_)])^(p_.), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplif
y[(m + 1)/n] - 1)*(a + b*Tan[c + d*x])^p, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p}, x] && IGtQ[Simplify[
(m + 1)/n], 0] && IntegerQ[p]

Rule 3719

Int[((c_.) + (d_.)*(x_))^(m_.)*tan[(e_.) + (f_.)*(x_)], x_Symbol] :> Simp[(I*(c + d*x)^(m + 1))/(d*(m + 1)), x
] - Dist[2*I, Int[((c + d*x)^m*E^(2*I*(e + f*x)))/(1 + E^(2*I*(e + f*x))), x], x] /; FreeQ[{c, d, e, f}, x] &&
 IGtQ[m, 0]

Rule 2190

Int[(((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.))/((a_) + (b_.)*((F_)^((g_.)*((e_.) +
 (f_.)*(x_))))^(n_.)), x_Symbol] :> Simp[((c + d*x)^m*Log[1 + (b*(F^(g*(e + f*x)))^n)/a])/(b*f*g*n*Log[F]), x]
 - Dist[(d*m)/(b*f*g*n*Log[F]), Int[(c + d*x)^(m - 1)*Log[1 + (b*(F^(g*(e + f*x)))^n)/a], x], x] /; FreeQ[{F,
a, b, c, d, e, f, g, n}, x] && IGtQ[m, 0]

Rule 2531

Int[Log[1 + (e_.)*((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.)]*((f_.) + (g_.)*(x_))^(m_.), x_Symbol] :> -Simp[((
f + g*x)^m*PolyLog[2, -(e*(F^(c*(a + b*x)))^n)])/(b*c*n*Log[F]), x] + Dist[(g*m)/(b*c*n*Log[F]), Int[(f + g*x)
^(m - 1)*PolyLog[2, -(e*(F^(c*(a + b*x)))^n)], x], x] /; FreeQ[{F, a, b, c, e, f, g, n}, x] && GtQ[m, 0]

Rule 6609

Int[((e_.) + (f_.)*(x_))^(m_.)*PolyLog[n_, (d_.)*((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(p_.)], x_Symbol] :> Simp
[((e + f*x)^m*PolyLog[n + 1, d*(F^(c*(a + b*x)))^p])/(b*c*p*Log[F]), x] - Dist[(f*m)/(b*c*p*Log[F]), Int[(e +
f*x)^(m - 1)*PolyLog[n + 1, d*(F^(c*(a + b*x)))^p], x], x] /; FreeQ[{F, a, b, c, d, e, f, n, p}, x] && GtQ[m,
0]

Rule 2282

Int[u_, x_Symbol] :> With[{v = FunctionOfExponential[u, x]}, Dist[v/D[v, x], Subst[Int[FunctionOfExponentialFu
nction[u, x]/x, x], x, v], x]] /; FunctionOfExponentialQ[u, x] &&  !MatchQ[u, (w_)*((a_.)*(v_)^(n_))^(m_) /; F
reeQ[{a, m, n}, x] && IntegerQ[m*n]] &&  !MatchQ[u, E^((c_.)*((a_.) + (b_.)*x))*(F_)[v_] /; FreeQ[{a, b, c}, x
] && InverseFunctionQ[F[x]]]

Rule 6589

Int[PolyLog[n_, (c_.)*((a_.) + (b_.)*(x_))^(p_.)]/((d_.) + (e_.)*(x_)), x_Symbol] :> Simp[PolyLog[n + 1, c*(a
+ b*x)^p]/(e*p), x] /; FreeQ[{a, b, c, d, e, n, p}, x] && EqQ[b*d, a*e]

Rubi steps

\begin{align*} \int x^3 \left (a+b \tan \left (c+d \sqrt{x}\right )\right ) \, dx &=\int \left (a x^3+b x^3 \tan \left (c+d \sqrt{x}\right )\right ) \, dx\\ &=\frac{a x^4}{4}+b \int x^3 \tan \left (c+d \sqrt{x}\right ) \, dx\\ &=\frac{a x^4}{4}+(2 b) \operatorname{Subst}\left (\int x^7 \tan (c+d x) \, dx,x,\sqrt{x}\right )\\ &=\frac{a x^4}{4}+\frac{1}{4} i b x^4-(4 i b) \operatorname{Subst}\left (\int \frac{e^{2 i (c+d x)} x^7}{1+e^{2 i (c+d x)}} \, dx,x,\sqrt{x}\right )\\ &=\frac{a x^4}{4}+\frac{1}{4} i b x^4-\frac{2 b x^{7/2} \log \left (1+e^{2 i \left (c+d \sqrt{x}\right )}\right )}{d}+\frac{(14 b) \operatorname{Subst}\left (\int x^6 \log \left (1+e^{2 i (c+d x)}\right ) \, dx,x,\sqrt{x}\right )}{d}\\ &=\frac{a x^4}{4}+\frac{1}{4} i b x^4-\frac{2 b x^{7/2} \log \left (1+e^{2 i \left (c+d \sqrt{x}\right )}\right )}{d}+\frac{7 i b x^3 \text{Li}_2\left (-e^{2 i \left (c+d \sqrt{x}\right )}\right )}{d^2}-\frac{(42 i b) \operatorname{Subst}\left (\int x^5 \text{Li}_2\left (-e^{2 i (c+d x)}\right ) \, dx,x,\sqrt{x}\right )}{d^2}\\ &=\frac{a x^4}{4}+\frac{1}{4} i b x^4-\frac{2 b x^{7/2} \log \left (1+e^{2 i \left (c+d \sqrt{x}\right )}\right )}{d}+\frac{7 i b x^3 \text{Li}_2\left (-e^{2 i \left (c+d \sqrt{x}\right )}\right )}{d^2}-\frac{21 b x^{5/2} \text{Li}_3\left (-e^{2 i \left (c+d \sqrt{x}\right )}\right )}{d^3}+\frac{(105 b) \operatorname{Subst}\left (\int x^4 \text{Li}_3\left (-e^{2 i (c+d x)}\right ) \, dx,x,\sqrt{x}\right )}{d^3}\\ &=\frac{a x^4}{4}+\frac{1}{4} i b x^4-\frac{2 b x^{7/2} \log \left (1+e^{2 i \left (c+d \sqrt{x}\right )}\right )}{d}+\frac{7 i b x^3 \text{Li}_2\left (-e^{2 i \left (c+d \sqrt{x}\right )}\right )}{d^2}-\frac{21 b x^{5/2} \text{Li}_3\left (-e^{2 i \left (c+d \sqrt{x}\right )}\right )}{d^3}-\frac{105 i b x^2 \text{Li}_4\left (-e^{2 i \left (c+d \sqrt{x}\right )}\right )}{2 d^4}+\frac{(210 i b) \operatorname{Subst}\left (\int x^3 \text{Li}_4\left (-e^{2 i (c+d x)}\right ) \, dx,x,\sqrt{x}\right )}{d^4}\\ &=\frac{a x^4}{4}+\frac{1}{4} i b x^4-\frac{2 b x^{7/2} \log \left (1+e^{2 i \left (c+d \sqrt{x}\right )}\right )}{d}+\frac{7 i b x^3 \text{Li}_2\left (-e^{2 i \left (c+d \sqrt{x}\right )}\right )}{d^2}-\frac{21 b x^{5/2} \text{Li}_3\left (-e^{2 i \left (c+d \sqrt{x}\right )}\right )}{d^3}-\frac{105 i b x^2 \text{Li}_4\left (-e^{2 i \left (c+d \sqrt{x}\right )}\right )}{2 d^4}+\frac{105 b x^{3/2} \text{Li}_5\left (-e^{2 i \left (c+d \sqrt{x}\right )}\right )}{d^5}-\frac{(315 b) \operatorname{Subst}\left (\int x^2 \text{Li}_5\left (-e^{2 i (c+d x)}\right ) \, dx,x,\sqrt{x}\right )}{d^5}\\ &=\frac{a x^4}{4}+\frac{1}{4} i b x^4-\frac{2 b x^{7/2} \log \left (1+e^{2 i \left (c+d \sqrt{x}\right )}\right )}{d}+\frac{7 i b x^3 \text{Li}_2\left (-e^{2 i \left (c+d \sqrt{x}\right )}\right )}{d^2}-\frac{21 b x^{5/2} \text{Li}_3\left (-e^{2 i \left (c+d \sqrt{x}\right )}\right )}{d^3}-\frac{105 i b x^2 \text{Li}_4\left (-e^{2 i \left (c+d \sqrt{x}\right )}\right )}{2 d^4}+\frac{105 b x^{3/2} \text{Li}_5\left (-e^{2 i \left (c+d \sqrt{x}\right )}\right )}{d^5}+\frac{315 i b x \text{Li}_6\left (-e^{2 i \left (c+d \sqrt{x}\right )}\right )}{2 d^6}-\frac{(315 i b) \operatorname{Subst}\left (\int x \text{Li}_6\left (-e^{2 i (c+d x)}\right ) \, dx,x,\sqrt{x}\right )}{d^6}\\ &=\frac{a x^4}{4}+\frac{1}{4} i b x^4-\frac{2 b x^{7/2} \log \left (1+e^{2 i \left (c+d \sqrt{x}\right )}\right )}{d}+\frac{7 i b x^3 \text{Li}_2\left (-e^{2 i \left (c+d \sqrt{x}\right )}\right )}{d^2}-\frac{21 b x^{5/2} \text{Li}_3\left (-e^{2 i \left (c+d \sqrt{x}\right )}\right )}{d^3}-\frac{105 i b x^2 \text{Li}_4\left (-e^{2 i \left (c+d \sqrt{x}\right )}\right )}{2 d^4}+\frac{105 b x^{3/2} \text{Li}_5\left (-e^{2 i \left (c+d \sqrt{x}\right )}\right )}{d^5}+\frac{315 i b x \text{Li}_6\left (-e^{2 i \left (c+d \sqrt{x}\right )}\right )}{2 d^6}-\frac{315 b \sqrt{x} \text{Li}_7\left (-e^{2 i \left (c+d \sqrt{x}\right )}\right )}{2 d^7}+\frac{(315 b) \operatorname{Subst}\left (\int \text{Li}_7\left (-e^{2 i (c+d x)}\right ) \, dx,x,\sqrt{x}\right )}{2 d^7}\\ &=\frac{a x^4}{4}+\frac{1}{4} i b x^4-\frac{2 b x^{7/2} \log \left (1+e^{2 i \left (c+d \sqrt{x}\right )}\right )}{d}+\frac{7 i b x^3 \text{Li}_2\left (-e^{2 i \left (c+d \sqrt{x}\right )}\right )}{d^2}-\frac{21 b x^{5/2} \text{Li}_3\left (-e^{2 i \left (c+d \sqrt{x}\right )}\right )}{d^3}-\frac{105 i b x^2 \text{Li}_4\left (-e^{2 i \left (c+d \sqrt{x}\right )}\right )}{2 d^4}+\frac{105 b x^{3/2} \text{Li}_5\left (-e^{2 i \left (c+d \sqrt{x}\right )}\right )}{d^5}+\frac{315 i b x \text{Li}_6\left (-e^{2 i \left (c+d \sqrt{x}\right )}\right )}{2 d^6}-\frac{315 b \sqrt{x} \text{Li}_7\left (-e^{2 i \left (c+d \sqrt{x}\right )}\right )}{2 d^7}-\frac{(315 i b) \operatorname{Subst}\left (\int \frac{\text{Li}_7(-x)}{x} \, dx,x,e^{2 i \left (c+d \sqrt{x}\right )}\right )}{4 d^8}\\ &=\frac{a x^4}{4}+\frac{1}{4} i b x^4-\frac{2 b x^{7/2} \log \left (1+e^{2 i \left (c+d \sqrt{x}\right )}\right )}{d}+\frac{7 i b x^3 \text{Li}_2\left (-e^{2 i \left (c+d \sqrt{x}\right )}\right )}{d^2}-\frac{21 b x^{5/2} \text{Li}_3\left (-e^{2 i \left (c+d \sqrt{x}\right )}\right )}{d^3}-\frac{105 i b x^2 \text{Li}_4\left (-e^{2 i \left (c+d \sqrt{x}\right )}\right )}{2 d^4}+\frac{105 b x^{3/2} \text{Li}_5\left (-e^{2 i \left (c+d \sqrt{x}\right )}\right )}{d^5}+\frac{315 i b x \text{Li}_6\left (-e^{2 i \left (c+d \sqrt{x}\right )}\right )}{2 d^6}-\frac{315 b \sqrt{x} \text{Li}_7\left (-e^{2 i \left (c+d \sqrt{x}\right )}\right )}{2 d^7}-\frac{315 i b \text{Li}_8\left (-e^{2 i \left (c+d \sqrt{x}\right )}\right )}{4 d^8}\\ \end{align*}

Mathematica [A]  time = 0.0813379, size = 261, normalized size = 1. \[ \frac{7 i b x^3 \text{PolyLog}\left (2,-e^{2 i \left (c+d \sqrt{x}\right )}\right )}{d^2}-\frac{21 b x^{5/2} \text{PolyLog}\left (3,-e^{2 i \left (c+d \sqrt{x}\right )}\right )}{d^3}-\frac{105 i b x^2 \text{PolyLog}\left (4,-e^{2 i \left (c+d \sqrt{x}\right )}\right )}{2 d^4}+\frac{105 b x^{3/2} \text{PolyLog}\left (5,-e^{2 i \left (c+d \sqrt{x}\right )}\right )}{d^5}+\frac{315 i b x \text{PolyLog}\left (6,-e^{2 i \left (c+d \sqrt{x}\right )}\right )}{2 d^6}-\frac{315 b \sqrt{x} \text{PolyLog}\left (7,-e^{2 i \left (c+d \sqrt{x}\right )}\right )}{2 d^7}-\frac{315 i b \text{PolyLog}\left (8,-e^{2 i \left (c+d \sqrt{x}\right )}\right )}{4 d^8}+\frac{a x^4}{4}-\frac{2 b x^{7/2} \log \left (1+e^{2 i \left (c+d \sqrt{x}\right )}\right )}{d}+\frac{1}{4} i b x^4 \]

Antiderivative was successfully verified.

[In]

Integrate[x^3*(a + b*Tan[c + d*Sqrt[x]]),x]

[Out]

(a*x^4)/4 + (I/4)*b*x^4 - (2*b*x^(7/2)*Log[1 + E^((2*I)*(c + d*Sqrt[x]))])/d + ((7*I)*b*x^3*PolyLog[2, -E^((2*
I)*(c + d*Sqrt[x]))])/d^2 - (21*b*x^(5/2)*PolyLog[3, -E^((2*I)*(c + d*Sqrt[x]))])/d^3 - (((105*I)/2)*b*x^2*Pol
yLog[4, -E^((2*I)*(c + d*Sqrt[x]))])/d^4 + (105*b*x^(3/2)*PolyLog[5, -E^((2*I)*(c + d*Sqrt[x]))])/d^5 + (((315
*I)/2)*b*x*PolyLog[6, -E^((2*I)*(c + d*Sqrt[x]))])/d^6 - (315*b*Sqrt[x]*PolyLog[7, -E^((2*I)*(c + d*Sqrt[x]))]
)/(2*d^7) - (((315*I)/4)*b*PolyLog[8, -E^((2*I)*(c + d*Sqrt[x]))])/d^8

________________________________________________________________________________________

Maple [F]  time = 0.157, size = 0, normalized size = 0. \begin{align*} \int{x}^{3} \left ( a+b\tan \left ( c+d\sqrt{x} \right ) \right ) \, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3*(a+b*tan(c+d*x^(1/2))),x)

[Out]

int(x^3*(a+b*tan(c+d*x^(1/2))),x)

________________________________________________________________________________________

Maxima [B]  time = 2.09575, size = 1265, normalized size = 4.85 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(a+b*tan(c+d*x^(1/2))),x, algorithm="maxima")

[Out]

1/420*(105*(d*sqrt(x) + c)^8*a + 105*I*(d*sqrt(x) + c)^8*b - 840*(d*sqrt(x) + c)^7*a*c - 840*I*(d*sqrt(x) + c)
^7*b*c + 2940*(d*sqrt(x) + c)^6*a*c^2 + 2940*I*(d*sqrt(x) + c)^6*b*c^2 - 5880*(d*sqrt(x) + c)^5*a*c^3 - 5880*I
*(d*sqrt(x) + c)^5*b*c^3 + 7350*(d*sqrt(x) + c)^4*a*c^4 + 7350*I*(d*sqrt(x) + c)^4*b*c^4 - 5880*(d*sqrt(x) + c
)^3*a*c^5 - 5880*I*(d*sqrt(x) + c)^3*b*c^5 + 2940*(d*sqrt(x) + c)^2*a*c^6 + 2940*I*(d*sqrt(x) + c)^2*b*c^6 - 8
40*(d*sqrt(x) + c)*a*c^7 - 840*b*c^7*log(sec(d*sqrt(x) + c)) - (7680*I*(d*sqrt(x) + c)^7*b - 31360*I*(d*sqrt(x
) + c)^6*b*c + 56448*I*(d*sqrt(x) + c)^5*b*c^2 - 58800*I*(d*sqrt(x) + c)^4*b*c^3 + 39200*I*(d*sqrt(x) + c)^3*b
*c^4 - 17640*I*(d*sqrt(x) + c)^2*b*c^5 + 5880*I*(d*sqrt(x) + c)*b*c^6)*arctan2(sin(2*d*sqrt(x) + 2*c), cos(2*d
*sqrt(x) + 2*c) + 1) - (-26880*I*(d*sqrt(x) + c)^6*b + 94080*I*(d*sqrt(x) + c)^5*b*c - 141120*I*(d*sqrt(x) + c
)^4*b*c^2 + 117600*I*(d*sqrt(x) + c)^3*b*c^3 - 58800*I*(d*sqrt(x) + c)^2*b*c^4 + 17640*I*(d*sqrt(x) + c)*b*c^5
 - 2940*I*b*c^6)*dilog(-e^(2*I*d*sqrt(x) + 2*I*c)) - 4*(960*(d*sqrt(x) + c)^7*b - 3920*(d*sqrt(x) + c)^6*b*c +
 7056*(d*sqrt(x) + c)^5*b*c^2 - 7350*(d*sqrt(x) + c)^4*b*c^3 + 4900*(d*sqrt(x) + c)^3*b*c^4 - 2205*(d*sqrt(x)
+ c)^2*b*c^5 + 735*(d*sqrt(x) + c)*b*c^6)*log(cos(2*d*sqrt(x) + 2*c)^2 + sin(2*d*sqrt(x) + 2*c)^2 + 2*cos(2*d*
sqrt(x) + 2*c) + 1) - 302400*I*b*polylog(8, -e^(2*I*d*sqrt(x) + 2*I*c)) - 50400*(12*(d*sqrt(x) + c)*b - 7*b*c)
*polylog(7, -e^(2*I*d*sqrt(x) + 2*I*c)) - (-604800*I*(d*sqrt(x) + c)^2*b + 705600*I*(d*sqrt(x) + c)*b*c - 2116
80*I*b*c^2)*polylog(6, -e^(2*I*d*sqrt(x) + 2*I*c)) + 2520*(160*(d*sqrt(x) + c)^3*b - 280*(d*sqrt(x) + c)^2*b*c
 + 168*(d*sqrt(x) + c)*b*c^2 - 35*b*c^3)*polylog(5, -e^(2*I*d*sqrt(x) + 2*I*c)) - (201600*I*(d*sqrt(x) + c)^4*
b - 470400*I*(d*sqrt(x) + c)^3*b*c + 423360*I*(d*sqrt(x) + c)^2*b*c^2 - 176400*I*(d*sqrt(x) + c)*b*c^3 + 29400
*I*b*c^4)*polylog(4, -e^(2*I*d*sqrt(x) + 2*I*c)) - 420*(192*(d*sqrt(x) + c)^5*b - 560*(d*sqrt(x) + c)^4*b*c +
672*(d*sqrt(x) + c)^3*b*c^2 - 420*(d*sqrt(x) + c)^2*b*c^3 + 140*(d*sqrt(x) + c)*b*c^4 - 21*b*c^5)*polylog(3, -
e^(2*I*d*sqrt(x) + 2*I*c)))/d^8

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (b x^{3} \tan \left (d \sqrt{x} + c\right ) + a x^{3}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(a+b*tan(c+d*x^(1/2))),x, algorithm="fricas")

[Out]

integral(b*x^3*tan(d*sqrt(x) + c) + a*x^3, x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int x^{3} \left (a + b \tan{\left (c + d \sqrt{x} \right )}\right )\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**3*(a+b*tan(c+d*x**(1/2))),x)

[Out]

Integral(x**3*(a + b*tan(c + d*sqrt(x))), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (b \tan \left (d \sqrt{x} + c\right ) + a\right )} x^{3}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(a+b*tan(c+d*x^(1/2))),x, algorithm="giac")

[Out]

integrate((b*tan(d*sqrt(x) + c) + a)*x^3, x)